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Abstract  

It is shown that the classical relativistic scattering is characterized by an eikonal function 
of two real variables as in the nonrelativistic theory, The most general form of this 
function is given. 

1. In troduct ion 

In the framework of symplectic mechanics the problem of relativistic 
scattering appears in a somewhat new way. It leads to several problems that we 
attempt to solve. 

The symplectic formalism describes a set of  nonrelativistic particles by a 
presymplectic 2-form o (i.e., a closed alternating covariant two-tensor of 
constant rank) given on the evolution space [i.e., the space of (ri, vi, t) i = 
1, • - •, n positions and velocities at a given time t] .  The foliation defined by 
the distribution x ~+ ker Ox gives the laws of  motion (see Souriau, 1970; or 
Abraham, 1967), e.g., for a set of free particles 

o (dx ) (~x )  = ~ mi[dvi~(6ri  ~ - vi~6t) - 6vie(dr ~ - viUdt)], ~ = t ,  2, 3 

i = 1  

where d x  = (drt, dvi, dO, 6x = (6ri, 6vi, 60 ,  i = 1, • " •,  n are tangent vectors at 
x,  dviU6rie is the usual scalar product; mi is the mass of the i th particle. An 
interaction is obtained by changing the two-form, e.g., 

n 

a'(dx) (6x) = o(dx) (6x) + 

i = 1  

mi [Fia6 t (dr~  - viadt) - F i ~ d t ( 6 r i  ~ - v i~6t)] ,  

a =  1 , 2 , 3  
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Fi(x) i : I ,  • • ", n are the forces, since: d x  @ ker o' iff 0 = m i d v  i - F i ( x ) d t  and 
dri  - v i d t  = O. 

The main advantage of  this formulation is the invariance of  a '  under the 
Galilei group action (while the usual kagrangians have not this invariance) and 
its consequences (Souriau, 1970). 

This evolution space is hardly appropriate in special relativity; in fact, the 
expression "positions and velocities at a given time", has no intrinsic meaning, 
the notion of simultaneity is not invariant under change of reference frame. 
However, one can choose as evolution space the tangent bundle of  the direct 
product E x • • • x E, where E is the four-dimensional Minkowski space-time; 
but if no precautions are taken, a noninteraction theorem is the first trap 
(Currie et al., 1963; Kfinzle, 1975; Souriau, 1970). There exists an approach 
that allows us to avoid the evolution space: One may consider the quotient of  
the evolution space by the previously described foliation ker a, which is inter- 
preted as the space of motions (or space of initial conditions) (Souriau, 1970); 
the projection of  the presymplectic form defines a symplectic structure (a 
closed alternating regular covariant two-tensor) which is invariant under the 
action of the Galilei group. This manifold of  motions and group action are in- 
trinsic, so this method can be applied to the relativistic case by translating the 
Gatilei-invariant description on the space of motions into a Poincar~ one. Then 
the space of motions of  a relativistic dynamical system is a symplectic mani- 
fold on which the Poincar~ group acts (this is the fundamental hypothesis of  
the symplectic formalism). But how can we construct the space of motions 
withoug the laws of motions defined on the evolution space? Geometric 
theorems allow construction and classification of  these spaces in the case of a 
transitive action (corresponding to the elementary particles): These spaces 
are defined by orbits of the standard coadjoint action of the Poincar6 group. 
E.g., the space of motions of  a free particle is described by the couples 
{M, P), where M is interpreted as the angular momentum and P as the 4- 
momentum. For more details see Souriau (1970). 

The symplectic theory of scattering follows this procedure. Consider 
scattering nonrelativistic particles with free asymptotic motions (precise defini- 
tions below). One can show that the correspondence "free motion IN" ~+ 
"free motion OUT" is a sympelctomorphism of the space i~f free motions, 
which commutes with the group action and defines a scattered motion space; 
the transcription to the relativistic case leads to the following hypothesis: M1 
the relativistic scattering states with free asymptotic motions are described by 
a symplectomorphism of  the space of free relativistic motions, commuting 
with the Poincar6 group action, and thus conserving the total 4-momentum 
and angular momentum of the system (Souriau, 1970). We give the most general 
form of this interaction map for two spinless particles, both of equal mass, and 
generalize the classical eikonal function. 

A s y m p t o t i c  Mot ions .  This motion suggested the main hypothesis of the 
existence of  the interaction map (cf. also Bell and Martin, 1975). 

Let V denote the evolution space of a nonrelativistic system, U its space 
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of motions, Uo its space of  free motions; i f x  ~ U, ri(x , t), vi(x, t) i = 1 . . . . .  n 
are the positions and velocities at time t for the motion x. There exists a 
unique freemotion of the system going through (ri(x, t), vi(x, t) t) E K (It is a 
sort of tangential free motion.) We shall denote it by F(x, t) C Uo. 

Definitions. For allx E Ufor which it exists 
(1) AIN(X ) = lim F(x,  t) is called the " IN"  asymptotic motion o f x .  

~? ---> _ c ¢  

(2) AOUT(X ) = lira F(x, t) is called the " 'OUT'asymptot ic  motion o f x .  
t ---> + o o  

(3) If it exists, the map 

IN (or jus tS)  x~-~(A{~(x))  will be denoted by Sou  T 

S is defined on an open part of  U o. 
Thus the scattering states for which S exists may be defined by working on 

the space of free motions/-7o, which is easier to work with than U. Unfortunately 
the Keplerian motions do not admit free asymptotic motions (distinguish trajec- 
tories and motions ! However, this theory can be applied to the short-range 
interactions. 

2. The Interaction Symplectomorphism 

Let U' be the space of motions of a relativistic system of two free particles, 
without spin, both of unit mass (this last hypothesis simplifies the calculations 
without qualitatively changing the results). 

x ¢ U' if and only if x = (/1, MI,/2, M2), where 11,/2, the 4-momenta, and 
M1, M2, the Lorentz angular momenta, satisfy the equations 

flI1 = -[212 = 1 

M1 : X l ~  - ~q Xt  (2.1) 

M2: XzL - h X2 

[I i E N4 x l; Mi E R 4x 4 lfIi = G-1MiTG and [i = Ii TG G is the diagonal 4 x 4 
matrix (1, - 1 ,  - 1 ,  -1 ) ]  

Xi =Mi l i+  XiIi, 3.i E ~ ,  i = 1, 2 (2.2) 

Xi define the space-time trajectories. 
The symplectic two-form is defined by 

o ( d x ) ( ~ x )  = d X I ~ I  1 - ~ 2 1 d l  1 + dX26Iz - 622di2 (2.3) 

dx and 6x are tangent vectors at x. The unknown is a map S : ~2 -+ gZ, where 
~2 is an open set of U = {x E U'/I1 ¢ / 2 } -  We eliminate the motions with 
parallel space-time trajectories for the following reason: If their distance is 
bigger than a given value (which can be infinite) there is no interaction; if the 
distance is smaller the motions cannot be free. ~2 is the set of  scattered motions. 
We know a priori the following: 
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S conserves 11 +/2, M1 + M2, the total 4-momentum and the total angular 
momentum (see the Introduction). (2.4) 

S is a symplectomorphism (2.5) 

Since computing S in the given coordinates system is hardly suitable, we shall 
define another one. 

The space-time trajectories are described by the equations (2.2); their space- 
time distance is minimal when X 1 and X2 satisfy 

(21 - 22)I1 = ( 2 2 -  X2)I2 = 0 (2 .6)  

We fix X a and X2 satisfying (2.6). 
Def in i t ions .  
(1) I f X  1 4= )(2, let us define J and the impact parameter a by  

2aJ = X1 - X2, a /> 0, J J  = - I  (2.7) 

I f a  = 0, the vector J is not determined. 
(2) Let 

I = X(I 1 +I2), / / =  1, X ~ R (2.8) 

(3) The polarization of the system is (Souriau, 1970) 

w = v o l ( I = ) ( h ) ( X l  - x2)  = , (M1 +Mg(I, +12) 

where vol is the usual volume element of  E4 and vol ( I1 ) ( I2 ) (X  l - X2)  is con- 
sidered as a covector. (For a detailed definition of the x operator see Souriau, 
1970, 13.93). 

Let 

L =/~w, /.L = - I ,  /1 E g~ (2.9) 

and 

2 x  = x~ + x2  (2 .1o)  

I f K  is determined by completing the orthonormal frame {I, J, K, L} so that 
KK = - I  and/~I =/~J = KL = 0, the expression of I1,/2, X1, )(2, in this frame 
becomes 

/1 = c h ~ 0 . I + s h ~ . K  

/2 = ch~ . I -  shoo .K, ~o>0 (2.11) 

XI = X + a J  

x2 = x -  as 

I f x  is a two-particle motion such that X 1 ~ X2, then x is characterized by X, 
I, J, K, L, a, and ~. We can now state the main theorem [notations and defini- 
tions of  (2.1)-(2.11)]. 
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3. Theorem 

.Let S satisfy (2.4) and (2.5), f i x  = (I1,Ml, I2,M2) let S(x) = (I1 out, 
M1 out, I2out, M2 out) = Xout, then there exists a real-valued differenti- 
able function u of  the variables H = ch ~0 and C = ash ~ such that 
(i) If  x is such that  X1 4= X2 then 

/1 out = 1 + cos 11 + 1 - cos /2 + sh ~p" sin - - .  J 
3C 

:1[( co 0U  ( I2out 1 -- ~--~]/1 + t +cos~-~  /2 1 - s h ~ - s i n - - . J o c  

Mlout = X+-S~I+a  c o s ~ - . J + s i n - - . K o c  i-lout 

~u - [ ~u - ~u 

~u / 0u ~u \]- 
M2out = X+5-~I-aicos~-~J+sin~-~K)]12out  

[ ( - / 2 o u t  X + ~ I - a  c o s ~ - ~ J + s i n ~ / ~  

(ii) I f x  is such that X1 = X2 (i.e., a = 0) then 

Xout = I1, MI + ~ , ( I I 1  - I I ~ ,  12, M2 + ~-~(II2 

or 

Xout = , M2 + ~-~(Ih - I22r), I1, M1 + ~-~(II1 - 1123 

Proof. A motion x, such that X1 4= )(2 is characterized by X, by the frame 
I,J, K, L and by the scalars a and ~, which are relativistic invariants. We 
denote for the motion Xout the corresponding variables by  )(out,,rout,/(out, 
/out, Lout, ~Pout, and aout. FNuation (2.4) gives 

/1 +12 =I lout  +I2out = 2Ich~p = 2/out ch~Pout 

but 



726 DONAXO 

so that ch ~ = ch ~Pout, % and ~0out have been chosen non-negative so that 

tp = qOou t and I = lou t (3.1) 

(2.4) gives also 

*(~l//t +M2)(I1 +12) = *(Mlout +M2out)(Ilout +I2out)  

so that 

Lou t = L 

Computing M 1 + M 2 with the expressions (2.11) leads to 

3/1 +3/2 =ch tp .  XT+ ash ~ 0 - J K -  ( ch~ .  IK'+ ash ~0. Ka y) 

(or, respectively, Mlout + M2out . . . .  ) such that 

chso. X] '+ a s h t p - J R -  c h ~ o - I / ( -  ashso-Kay= ch~0. Xout Iout 

+ aout sh~o. J o u t / ~ o u t  - -  aout shoo. Koutayou, (3.2) 

Applying this operator to I =  Iout and considering (2.10) and (2.11) we get 

X -  Xou t = I ( . g -  X%ut)l (3.3) 

let 

(X - Xout)I  = 0 (a, ~p) @ R (3.4) 

Then we get finally 

Xout = X + O(a, ~) " I 

Putting (3.5) into (3.2) we get, after some simplifications, 

a(JK - K J) = aou t (Jout/(ou t - Kout Jout) 

thus 

and 

such that 

therefore, 

a vol  (K)(J) = aou, vol  (Kou,)( .rout)  

a vol ( K ) ( J ) ( I )  = aout vol (Kout) (Jout)(I) 

a .  L = aout • Lout, but L = Lout 

(3.5) 

(3.6) 

a = aout (3.7) 

Putting this in (3.6) gives 

J/~ - K J =  Jout/~out -~- KoutJou t 

so that Jout = -JKKout  + KJKout = c o s a .  J + s ina .  K. Doing the same for 
Kou t gives finally 

Jout = c o s a .  J +  sinc~. K and Kout = - s i n a .  J +  cos ct • K (3.8) 
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where e~(a, ~o) is a differentiable function o f  a and % The results (3.1)-(3.8) 
and definitions (2.7)-(2.11) give at last 

I lout  = ½[(1 + cosa) I  1 + (1 - cosa)I2] - sh~0. s ina .  J 

Isout =-12[(1 - cosa)Ia +(1 + cosa)Iz] + shoo. s i n a - J  

MI out = IX + OI + a(cos a -  J - sin a -  K) ] • 71 out - I lout  [ 2  + 0 [  

+ a ( c o s a .  ] -  s i n a . / ~ ) ]  (3.9) 

-/142 out = [X + OI - a (cos a .  J - sin c~. K)]  75 out - / 2  out [3( + 0 I  

-a(cosa- Y -  s ina .  ~ ')]  

In view of  the hypothesis (2.5) we shall now introduce the scattering eikonal. 

4. Scattering Eikonal 

Consider the one-form on the space of  motions U'  

~(dx) = 21dI1 + XsdI~ (4.1) 

The two-form a (2.3) is the exterior derivative of  ~ .  Using (2.11) we can write, 
after some reductions, 

~(dx)  = 2 [X~d(ch ~0I) + ash ~p. ]dK] (4.2) 

The image of  c~ by S is 

S*(~)  [dS(x)] = 2[Xd(ch ~pl) + sh ~p(Od~0 + ada) + sh~.  a. ~[dK] 

So that 

S*(~)  [dS(x)] - U~dx) = 2 (0 sh ~. d~o + ash ~o. da) (4.3) 

S is a symplectomorphism if and only if the exterior derivative o f  (4.3) is zero, 
i.e., (4.3) is locaUy exact; thus 

0 sh ~p. d~0 + ash ~pda - d(ash ~0. a) = 0d(ch ¢) - a d(ash tp) 

must be exact. Thus there exists locally a function u such that 

du = 0d(ch  ¢ ) -  a d(ash~p) (4.4) 

Let H = ch ~0 and C = ash ~o, then (4.4) is equivalent to 

Ou Ou 
0 3H and a =  3C (4.5) 

Putting (4.5) into (3.9) we complete the proof of  the first part o f  the theorem. 

Definition. U is called the scattering eikonal by analogy with the nonrela- 
tivistic case. 

We have defined S : Xin~--~Xout for motions for which X1 ¢ X2, if X1 = Xs 
we obtain a collision motion, it is possible to extend S to the submanifold of  
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collision motions by taking a new coordinate system. This yields the second 
part of the theorem (for a detailed proof see Donat0, 1975). 

5. Conc lus ion  

The scattering problem in the framework of symplectic geometry, is 
reduced to the study of the scattering symplectomorphism. We have given the 
general form of this symplectomorphism for all scattering states with free 
asymptotic motions, and shown that one function, the eikonal, characterizes 
the whole system. This function is not determined by the theory; it must be 
chosen on the basis of a specific interaction, perhaps, in analogy with known non- 
relativistic models. Let us remark that the Kepterian scattering cannot be 
treated by this theory, however (there are no free asymptotic motions): In 
many nonrelativistic cases, the Scattering is described by a symplectomorphism 
related to an eikonal, e.g., for the r -2 attractive potential or the elastic ball 
collisions the eikonal is, respectively, 

U(H, C)  = 7r . [e - @2 _ 2k)1/2] and U(H, c) = 2 ( 2 H -  C2)  1/~ 

- 2c arctan (2H - ca) 1/2 
c 

where H is the total energy, c the length of  the angular momentum, k a 
constant, and the balls have unit diameter. 
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